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When a nonlinear system approaches its singularities, the system is hard to control. However,
its behavior shows abundant information about the system. This paper presents an approach
for feedback linearization control of a nonlinear system with singularities by using high order
derivatives to explore the detail of the dynamics of the system near the singularities. Around the
singularity points, a system doesn’t have well-defined relative degree, and conventional feedback
linearization techniques fail. This paper presented, differentiates the outputr + 1 times untilu̇
appears and a differential equation of the inputu is acquired. It shows that at the singularity
point, theu̇ term disappears and the differential equation degenerates to a quadratic equation
that governs the dynamics of the system near the singularities. The solutions to the quadratic
equations are discussed and shows that if the quadratic equation has only real roots, the system
has a well defined relative degree at the singularity equal tor +1. It shows that the neighborhood
of the singularity can be divided into two sub-regions: in one region, it is guaranteed that the
quadratic equation will have only real solutions and the other region it may have complex roots.
By divided the neighborhood of the singularity into the above regions, more precise control of the
system near singularity can be realized. Switching controllers can be designed to switch from a rth

controller when system is far away from the singularity to two (r+1)th controllers when system
is in the neighborhood of the singularity. The ball and beam system is used as a motivation
example to show how the approach works. General formulation of feedback linearization by
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using the presented approach is presented. Numerical simulation results are also given.

1.1 Introduction

The ball and beam system, is one of the most popular models for studying control
systems because of it is simplicity and yet the control techniques that can be studied
cover many important modern control methods [1-7].

One of the interesting properties of the ball and beam that has motivated much re-
search is that it is a non-regular system, i.e., the relative degree of it is not well defined at
a certain singular point in phase space. Thus conventional exact feedback linearization
techniques do not apply. The well-known work of Hauser et. al. [1], use approximation
feedback linearization by dropping certain terms that leads to the singularities. How-
ever, this approach does not work well when the system is away from the singularities,
because of the approximation error that is generated by dropping the terms. Tomlin
et. al. [2], proposed a switching control law: a controller that uses exact feedback lin-
earization when the system is in the region far away from the singularities and a switch
to the approximation feedback linearization controller when the system is approaching
the singularities. Lai et. al. [3], proposed a tracking controller based on approximate
backstepping, and the simulation results show that this controller achieves better steady
state error than other approximation methods. Other approaches for ball/beam control
includes a fuzzy controller [4] and a genetic controller [5]. In [7], a saturation control
guaranteed global asymptotic stability was given.

This paper presents switching control laws similar to the switching controller pre-
sented in [2]. The contribution of this paper is that by taking(r + 1)th (where r is the
relative degree of the system away from singularities.) derivatives, it showed that the
neighborhood of the singularity can be further divided into two regions. Switching con-
trollers designed by approaches in [1] and [2] should be applied to only one region. By
divided the neighborhood into two regions, more precise control can be realized.

This paper is organized as follows: Section 2 is a brief description of the supporting
methods presented in [1,2]. Section 3 presents the high order derivative approach, with
the ball and beam system used as an example. Section 4 is the implementation and dis-
cussion of the presented approach, Section 5 gives some simulation results and Section
6 is the generalized formulation of the presented method to solve feedback linearization
with singularities. Section 7 presents the summary and some open questions.

1.2 Approximation feedback linearization and switch
through singularities

Fig. 1.1 shows the ball and beam system to be studied. The controller inputτrotates the
beam with the ball on it. The ball rolls based on the gravitational pull projected by the
beam’s angle,θ . The objective of the controller is to maintain the ball at a distancer
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from the pivot point. Using a nonlinear transformation, the equations of the system can
be written as [1]:

Figure 1.1: The ball beam system
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(1.1)

Wherex1 = r is the ball position measured from the beam center to the ball center
andx3 = θ is the beam angle.B andg are constants and the inputu is a nonlinear
transformation of the torqueτ.

Using the typical steps for feedback linearization, take the derivatives ofy until u
appears at the right side of (1.1), we get:

y = x1 = h(x)
ẏ = x2 = L f h(x)

ÿ = B(x1x2
4−gsinx3) = L2

f h(x) (1.2)
...
y = B(x2x2

4−gx4cosx3)︸ ︷︷ ︸
L3

f h(x)

+2Bx1x4︸ ︷︷ ︸
LgL2

f h(x)

u (1.3)

u =
...
y −B(x2x2

4−gx4cosx3)
2Bx1x4

(1.4)

WhereLk
f (h) is thekth Lie derivative ofh along f [8]. Here,u appears at the right-

hand side of the 3rd derivative ofy hence the relative degree of the system is 3, except
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at the singularity wherex1x4 = 0. At this point,u disappears and the relative degree is
not well defined.

The approximation feedback linearization technique presented by Hauser [1] pro-
poses two approximation methods. The first one is to drop thex1x2

4 term in (1.2) and
then differentiate outputy until u appears:

ξ1 = y = x1

ξ̇1 = ẏ = x2

ξ̇2 = ÿ = Bx1x2
4︸ ︷︷ ︸

drop this term

−Bgsinx3

ξ̇3 =
...
y =−Bgx4cosx3

ξ̇4 = y(4) = Bgx2
4 sinx3 +(−Bgcosx3)u

u =
v−Bgx2

4 sinx3

−Bgcosx3
(1.5)

The other approximation is to drop the 2Bx1x4u term in (1.3) and then take 4th

derivative ofy:

y = x1

ẏ = x2

ÿ = B(x1x2
4−gsinx3)...

y = B(x2x2
4−gx4cosx3)+ 2Bx1x4︸ ︷︷ ︸

dropthisterm

u

y(4)) = B2x1x4
4 +B(1−B)x2

4 sinx3 +(−Bgcosx3 +2Bx2x4)u

u =
v− (B2x1x4

4 +B(1−B)gx2
4 sinx3)

(2Bx2x4−Bgcosx3)
(1.6)

This approximation approach [1] works well when system is far away fromx1x4 =
0.

1.3 Approximation using high order derivatives

In [1], both approximations dropped the terms that lead to singularity before taking the
4th derivative ofy and thus effectively adding modeling errors. An alternative is to take
4th derivative ofy without dropping the nonlinear terms. This is typically not done
because it results in a differential equation ofu which could be difficult to solve and
because it creates a dynamic compensator. Following the general feedback linearization
procedures and differentiate the output one more time, we get ˙u at the right-hand side:

y = x1

ẏ = x2

ÿ = B(x1x2
4−gsinx3)...

y = B(x2x2
4−gx4cosx3 +2x1x4u)
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y(4) = B[ẋ2x2
4 +2x2x4ẋ4−g(ẋ4cosx3−x4ẋ3sinx3)

+2(ẋ1x4 + ẋ4x1)u+2u̇x1x4︸ ︷︷ ︸
u̇ term

] (1.7)

Substitute the state space equations (1.1) to (1.7), yields:

y(4) = B[(Bx1x2
4−Bgsinx3)x2

4 +2x2x4u−g(ucosx3−x2
4 sinx3)

+2(x2x4 +ux1)u+ 2u̇x1x4︸ ︷︷ ︸
This term drops at singularity

] (1.8)

Around the neighborhood of the singular point, we havex1x4 → 0 and (1.8) be-
comes:

y(4) = B[Bx1x4
4−Bgsinx3x2

4
+2x2x4u−g(ucosx3−x2

4 sinx3)+2(x2x4 +ux1)u]
(1.9)

Let v= y(4), collect the terms, a quadratic equation ofu at the singular point results:

2Bx1u2 +uB(4x2x4−gcosx3)
+ [B2x1x4

4 +Bg(1−B)sinx3x2
4−v] = 0

(1.10)

So if the general feedback linearization procedure is applied and the 4th order deriv-
ative of the output is calculated, this yields Eq. (1.8), a differential equation inu.
However, at the singular pointx1x4 = 0, this differential equation will degenerate to a
quadratic equation (1.10) and can be used to solve for u. Further more, Eq. (1.10) can
be used to approximate the system around the neighborhood of the singularity.

By using the switching idea introduced in [2], switching controllers can be designed
using (1.4) when|x1x4|> δ 2 and (1.10) when|x1x4| ≤ δ 2. Unlike [1] and [2], (1.10) is
an exact feedback linearization of the original system at the singularity without drop-
ping the terms leads to the singularity.

Since (1.10) is a quadratic equation, the general solutions are two conjugate com-
plex roots. However, in order to physically implement (1.10), the solutions should be
real numbers.

Define:
a = 2Bx1

b = B(4x2x4−gcosx3)
c = B2x1x4

4 +Bg(1−B)x2
4 sinx3−v

∆ = b2−4ac

u = −b±
√

∆
2a

Solutions to (1.10) depend on the value of∆. In order to implement (1.10),∆
should≥0. It is difficult to find the condition that guarantees∆ ≥ 0. However, the
following section shows that (1.10) has only one real solution in some neighborhood of
the singularity.



6 Feedback linearization control of systems with Singularities

Figure 1.2: The neighborhood of the singularity point

1.4 The behavior of system around the singularity

As shown Fig. 1.2, the singularity|x1x4| = 0 in thex1− x4 phase plan can be divided
into two regions:

1. S1 : x1 = 0, x2 ∈ R x2 6= 0. In Fig. 1.2, it is thex4 axis.

2. S2 : x4 = 0, x1 ∈ R x1 6= 0. In Fig. 1.2, it is thex1 axis.

We can define the neighborhood of singularity asS= {x∈ R4, |x1x4|< δ 2}. In the
x1− x4 phase plan,S is the shadowed region surrounded by four hyperbolic curves:
|x1x4|= δ 2. Scan be further divided into two regions:

S1 ⊂ S, |x1| ≤ δ

S2 = S−S1

Condition (1). When system falls inS1, |x1| ≤ δ , (1.10) can be approximated by

2Bx1u2︸ ︷︷ ︸
drop it, whenx1→0

+B(4x2x4−gcosx3)

+ [B2x1x4
4 +Bg(1−B)sinx3x2

4−v] = 0

(1.11)

Thus,

uS1 =
v− [B2x1x4

4 +B(1−B)gx2
4 sinx3]

B(4x2x4−gcosx3)
(1.12)

Compare with the approximation expression ofu, Eq. (1.6) used in [1], rewrite here

for convenience,u = v−[B2x1x4
4+B(1−B)gx2

4 sinx3]
(−Bgcosx3+2Bx2x4) .The only difference of the two equations
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is the factor of theBx2x4term. In (1.12), the factor is 4 and in (1.6) is 2. This difference
is because of the dropped term 2Bx1x4u.

More importantly, it shows that (1.6) only captures the system whenx1 → 0 while
it tries to approximate the system whenx1x4 → 0. In other words, approximation by
dropping the nonlinear term before taking(r + 1)th derivatives [1,2] is only an partial
approximation of system near the singularity.

Condition (2). When system falls intoS2,|x4|< δ . (1.10) can be approximated by

2Bx1u2 +uB(−gcosx3)−v = 0 (1.13)

In this case, the solutions to (1.10) are a pair of conjugate complex roots. The
condition for the above equation to have only real roots is:

∆ = (Bgcosx3)2 +8Bvx1 ≥ 0,

which is difficult to obtain. Also, that this equation can further divideS2 into two sub-
regions. In one sub-region, (1.13) will have only real roots and in another one, only
complex roots.

Currently, as a heuristic rule, only one of the solution of (1.13) is selected and the
real part of it is used as the control variableu. Further study in this region is needed.

Thus, the neighborhood of the singularity can be approximated by equation (1.11)
and (1.13).

Switching controllers can be designed so that when|x1x4|> δ 2, exact linearization
(1.4) is used. When|x1x4| < δ 2, (1.11) or (1.13) is used. Previous work [2] provides
the applicability of such switching law based on the zero dynamics at the switching
boundary.

The figure of the switching controller is shown in Fig. 3.

Figure 1.3: The switching controller

1.5 Simulation results

Several test cases used in [1-4] are also used in this paper for comparison purpose.
MATLAB/Simulinkr [9] was used for simulations with the 3rd order 4th order con-
trollers that are designed with all the poles at –2. B=0.7143 and g=9.8.
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• Regulation of the system to the equilibrium point [0 0 0 0]. The same examples
are used in [4].

1. Initial conditions close to singularity: [2.4,-0.1,0.6,0.1] [-2.4, 0.1,-0.6,-0.1]
[0.6, -0.1, 0.6,0.1] [-0.6,0.1,–0.6,–0.1]. The switching condition isδ 2 =
|x1x4|= 0.02. The simulation results are shown in Fig. 1.4.

Figure 1.4: Initial conditions close to singularity

2. Initial conditions far away from the singularity: [9,-0.5,0.345,0.5] [-9,0.5,-
0.345,-0.5] [18,-0.5,0.345,0.5] [-18,0.5,-0.345,-0.5]. The switching condi-
tion isδ 2 = |x1x4|= 1. The simulations are shown in Fig. 1.5. The approx-
imation method used in [1] failed in this case.

• Tracking periodic functions, the switching condition isδ 2 = |x1x4|= 0.02.

1. yd = 1.9sin1.3t +3,X0 = [3,0,0,0]. This case is used in [2] and the approx-
imation method presented in [1] is unstable. Fig. 1.6 shows the tracking
results, withyd = 1.9sin1.3t +3,X0 = [3,0,0,0] and the maximum steady
state error is 5e-5.

2. yd = 3cosπ

5 t,X0 = [3,0,0,0],which is used in [1],[3], Fig. 1.7 shows the
tracking results, withyd = 3cosπ

5 t,X0 = [3,0,0,0] and the maximum steady
state error is 15e-3.

The above simulation results shows that the presented method can generated better
simulate results than the method provided in [1].
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Figure 1.5: Initial conditions far away from the singularity: Method in [1] failed

Figure 1.6: Tracking ofyd = 1.9sin1.3t +3,X0 = [3,0,0,0], Method in [1] failed



10 Feedback linearization control of systems with Singularities

Figure 1.7: Tracking ofyd = 3cosπ

5 t,X0 = [3,0,0,0]

1.6 General formulation of feedback linearization with
singularity

For a SISO nonlinear system:

ẋ = f (x)+g(x)u
y = h(x)

For exact I/O linearization, following the general procedure:

ẏ = L f h(x)
ÿ = L2

f h(x)
...

y(r) = Lr
f h(x)+LgLr−1

f h(x)u

Let v = y(r), then

u =
v−Lr

f h(x)

LgLr−1
f h(x)

(1.14)

If with x = xs,LgLr−1
f h(xs) = 0, thenxs is a singularity and the relative degree is not

well defined and exact linearization will fail.

However, differentiating the output one more step yields:

y(r+1) =
d
dt

[Lr
f h(x)+LgLr−1

f h(x)u]

y(r+1) =
∂

∂x
Lr

f h(x)
dx
dt

+
d
dt

[LgLr−1
f h(x)u]
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...
y(r+1) = u2L2

gLr−1
f h(x)+u[LgLr

f h(x)
+L f LgLr−1

f h(x)]+Lr+1
f h(x)+ u̇[LgLr−1

f h(x)]

(1.15)

SinceLgLr−1
f h(x) = 0, (1.15) becomes

y(r+1) = u2L2
gLr−1

f h(x)+u[LgLr
f h(x)+L f LgLr−1

f h(x)]+Lr+1
f h(x)

Let w = y(r+1), we have:

u2L2
gLr−1

f h(x)+u[LgLr
f h(x)+L f LgLr−1

f h(x)]+(Lr+1
f h(x)−w) = 0, (1.16)

which is a quadratic equation ofu and thus generally there are two conjugate complex
roots. However, ifL2

gLr−1
f h(x) = 0, then (1.16) becomes a linear equation andu has

only one real solution. Thus the space defined byLgLr−1
f h(xs) = 0 (the singularity) into

two regions:S1, in which it is guaranteed that (1.16) will have a real root andS2, in
which (1.16) may have complex roots.

Since inS1 defined byL2
gLr−1

f h(x) = 0, (1.16) has only one real solution, the output
relative degree at singularity but also insideS1 can be defined asr +1.

A switching controller can be designed that uses anrth controller (1.14) when the
system is away from singularity, and switches to two(r + 1)th controller defined by
(1.16) whenx is in the neighborhood of singularity. One will be used inS1 and one
used inS2.

1.7 Conclusion

This paper presented an approach to feedback linearization of a non-regular system.
The output is differentiated(r + 1)th until u̇ appears and a differential equation ofu
is obtained. It shows that at the singularity point, the ˙u term disappears and the dif-
ferential equation degenerates to a quadratic equation. The solutions to the quadratic
equations are discussed and if the quadratic equation has only real roots, the system has
a well defined relative degree at the singularity equal to r+1. Switch controllers can be
designed to switch from anRth order controller when the system is far away from the
singularity to two(r +1)th order controllers when the system is in the neighborhood of
the singularity. Simulation results illustrate the presented approach.

Further research will focus on the condition under which the quadratic equation
will have only real solutions and the relationship between the type of the roots (real,
pure imaginary, conjugate complex) and the controllability of the system. An adaptive
switching condition should also be studied to make the presented approach more robust.
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